Introduction to Python

Introduction to Python: Comprehensive Notes

  1. Introduction to Python
  • Invented By: Python was created by Guido van Rossum.
  • Year: Python was first released in 1991.
  • Usage: Python is widely used in web development, data science, artificial intelligence, automation, and more.
  • Why Python?
  • Readability: Simple and clean syntax.
  • Community Support: Extensive libraries and frameworks.
  • Versatility: Used in various domains like web development, data science, etc.
  1. Python Syntax
  • Indentation: Python uses indentation (spaces or tabs) to define blocks of code.
  • Example:

if True:
print(“This is indented”)

  • Comments:
    Single-line:
    Use # for single-line comments.
    Multi-line: Use triple quotes (”’ or “””) for multi-line comments.
  • Example:

# This is a single-line comment
“””
This is a
multi-line comment
“””

  1. Data Types
  • Numeric Types: int, float, complex
  • Sequence Types: str, list, tuple
  • Mapping Type: dict
  • Set Types: set, frozenset
  • Boolean Type: bool
  • None Type: NoneType
  • Example:

a = 10       # int
b = 3.14     # float
c = ‘Hello’  # str
d = True     # bool

  1. Variables
  • Declaration: Variables are created when you assign a value to them.
  • Dynamic Typing: Python variables do not require an explicit declaration of type.
  • Example:

x = 5        # Integer
y = “Hello”  # String
z = 3.14     # Float

  1. Operators
  • Arithmetic Operators: +, -, *, /, //, %, **
  • Comparison Operators: ==, !=, >, <, >=, <=
  • Logical Operators: and, or, not
  • Membership Operators: in, not in
  • Identity Operators: is, is not
  • Example:

a = 10
b = 20
print(a == b)  # False
print(a is b)  # False

  1. Control Flow and Looping Statements
  • Conditional Statements:
  • if, elif, else
  • Example:

x = 10
if x > 0:
print(“Positive”)
elif x == 0:
print(“Zero”)
else:
print(“Negative”)

  • Looping Statements:
  • For Loop:

for i in range(5):
print(i)

  • While Loop:

i = 0
while i < 5:
print(i)
i += 1

  • Loop Control: break, continue, pass
  1. Functions
  • Introduction: Functions allow for code reuse and modularity.
  • Syntax:

def function_name(parameters):
“””Docstring”””
statement(s)

Example:

def greet(name):
return f”Hello, {name}!”

print(greet(“Alice”))

  • Arguments: Positional, keyword, default values.
  • Return Statement: Used to return values from a function
  1. Modules and Packages
  • Modules: A Python file containing definitions and statements.
  • Importing Modules:

import math
print(math.sqrt(16))

  • Packages: A collection of modules in directories that include a special __init__.py file.
  • Creating a Module: Any .py file can be used as a module.
  • Example:

from math import pi
print(pi)

  1. File Handling
  • Reading and Writing Files:
  • Open a file: open(filename, mode)
  • Modes: r (read), w (write), a (append), b (binary mode)
  • Example:

with open(‘file.txt’, ‘r’) as file:
content = file.read()
print(content)

  • Writing to a File:

with open(‘file.txt’, ‘w’) as file:
file.write(“Hello, World!”)

  1. Error Handling
  • Try-Except Block:

try:
# Code that may throw an error
x = 1 / 0
except ZeroDivisionError:
print(“You cannot divide by zero!”)
finally:
print(“This runs no matter what.”)

  • Multiple Exceptions: Handle multiple exceptions using tuples.
  1. Object-Oriented Programming (OOP)
  • Class and Objects:
  • Class Definition:

class MyClass:
def __init__(self, name):
self.name = name

def greet(self):
return f”Hello, {self.name}”

  • Object Creation:

obj = MyClass(“Alice”)
print(obj.greet())

  • Inheritance:Allows one class to inherit attributes and methods from another.

class Animal:
def sound(self):
return “Some sound”

class Dog(Animal):
def sound(self):
return “Bark”

dog = Dog()
print(dog.sound())  # Output: Bark

  • Polymorphism: Same method name, different implementations.
  1. List Comprehensions
  • Syntax: [expression for item in iterable if condition]
  • Example:

squares = [x**2 for x in range(10)]
print(squares)

  • Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
  1. Lambda Functions
  • Anonymous Functions: Created using the lambda keyword.
  • Syntax: lambda arguments: expression
  • Example:

add = lambda x, y: x + y
print(add(2, 3))  # Output: 5

  1. Map, Filter, and Reduce
  • Map: Applies a function to all items in an iterable.

nums = [1, 2, 3, 4]
squares = list(map(lambda x: x**2, nums))
print(squares)  # Output: [1, 4, 9, 16]

  • Filter: Filters items based on a condition.

nums = [1, 2, 3, 4]
evens = list(filter(lambda x: x % 2 == 0, nums))
print(evens)  # Output: [2, 4]

  • Reduce: Reduces a sequence to a single value.

from functools import reduce
nums = [1, 2, 3, 4]
product = reduce(lambda x, y: x * y, nums)
print(product)  # Output: 24

  1. Common Built-in Functions
  • Examples: len(), sum(), max(), min(), sorted(), type(), range()
  • Example Usage:

numbers = [1, 2, 3, 4]
print(len(numbers))  # Output: 4
print(sum(numbers))  # Output: 10

  1. Debugging
  • Simple Debugging: Use print() statements to track variables.
  • Python Debugger (pdb):

import pdb
pdb.set_trace()

  • Setting Breakpoints: Can be used to pause execution and inspect code.

This comprehensive document covers the fundamental concepts of Python and provides clear examples for each topic.

 

1 Comment

  1. Joe Doe
    April 27, 2023

    The design is simple and elegant. The customer support on this product is also amazing. I would highly recommend you to purchase templates from the Marketify team! Thank you for the wonderful project.

    Reply

Leave a Reply to Joe Doe Cancel reply

To Top